Math 115
Winter 2017
Lecture 7

Line Segment from A to B

$$
\sim_{M} B\left(x_{2}, y_{2}\right) \overline{A B}
$$

Distance between them $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Midpoint $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ or $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Consider the line Segment $A B$ where $A(0,6)$ and $B(8,0)$

$$
\left.\begin{array}{l}
m\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
=\left(\frac{0+8}{2}, \frac{6+0}{2}\right) \\
M(4,3)
\end{array}\right\} \text { Slope }
$$

$$
\begin{aligned}
d & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(0-8)^{2}+(6-0)^{2}} \\
& =\sqrt{(-8)^{2}+(6)^{2}} \\
& =\sqrt{64+36}=\sqrt{100}=10 \\
m & =\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{0-6}{8-0}=\frac{-3}{4}
\end{aligned}
$$

$$
A(-3,7), B(1,3)
$$

(1) Draw $\overline{A B}$
(2) $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-3-1)^{2}+(7-3)^{2}} \\
& =\sqrt{(-4)^{2}+(4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32} \approx 5.65
\end{aligned}
$$

(4) $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
(3)

$$
=\frac{7-3}{-3-1}=\frac{4}{-4}=-1
$$

$$
\begin{aligned}
& M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =M\left(\frac{-3+1}{2}, \frac{7+3}{2}\right) \\
& =M\left(\frac{-2}{2}, \frac{10}{2}\right)=M(-1,5)
\end{aligned}
$$

Repeat last example for

$$
A(0,-4) \vdots B(6,0)
$$

$$
\begin{aligned}
d & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(0-6)^{2}+(-4-0)^{2}} \\
& =\sqrt{(-6)^{2}+(-4)^{2}}=\sqrt{36+16} \\
& =\sqrt{52} \approx \sqrt{7.21} \\
& M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =M\left(\frac{0+6}{2}, \frac{-4+0}{2}\right) \\
& =M\left(\frac{6}{2}, \frac{-4}{2}\right)=M(3,-2)
\end{aligned}
$$

$$
=\sqrt{(0-6)^{2}+(-4-0)^{2}}
$$

$$
m=\frac{\text { Rise }}{\text { Run }}=\frac{4}{6}=\frac{2}{3}
$$

Graph using intercepts: $5 x-2 y=-10$

x	y
0	5
-2	0

Convert to slope-Int form, Graph using slope $\dot{\varepsilon}$ Int.

$$
\begin{aligned}
& 3 x+5 y=-10 \\
& 5 y=-3 x-10 \\
& y=\frac{-3}{5} x-2 \\
& m=\frac{-3}{5}, y-\operatorname{Int}(0,-2)
\end{aligned}
$$

Graph using Point-slope

$$
\begin{aligned}
& \begin{array}{c}
\left.y-3=\begin{array}{c}
\frac{1}{2}(x-4) \\
m=\frac{1}{2}
\end{array}\right)
\end{array} \\
& \text { Point (} 4,3 \text {) } \\
& y+5=\frac{-2}{3}(x-2) \\
& m=\frac{-2}{3} \\
& \text { Point }(2,-5)
\end{aligned}
$$

Graph: $y-2=-\frac{3}{4}(x+5)$
Slope $m=\frac{-3}{4}$
Point ($-5,2$)
Take opposite of numbers after $x \geq y$.

$$
m \angle O \Rightarrow \text { Decreasing }
$$

Graph

$$
\begin{array}{ll}
y-2=0 & \dot{\varepsilon} \\
y=3=0 \\
y=2 & x=-3 \\
Y-0 n l y & x-0 \text { ll } \\
\text { H.L. } & \text { V.L. }
\end{array}
$$

Graph

$$
y+3=2(x-4)
$$

Point-slope form

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=2=\frac{2}{1} \frac{\text { Rise }}{\text { Run }} \\
& \operatorname{Point}(4,-3)
\end{aligned}
$$

write in Slope-Int form

$$
y+5=\frac{-2}{3}(x-4) \longleftrightarrow y=m x+b
$$

(1) Distribute or MUltiply by LCD to remove fractions

$$
\begin{aligned}
& \text { LCD }=3 \\
& 3 y+3 \cdot 5=70 \cdot \frac{-2}{3}(x-4) \Rightarrow 3 y+15=-2(x-4) \\
& 3 y+15=-2 x+8 \\
& \text { (2) Isolate Y } 3 y=-2 x+8-15 \\
& m=-\frac{2}{3}, Y-\operatorname{Int}\left(0, \frac{7}{3}\right) \begin{array}{l}
3 y=-2 x-7
\end{array} \\
& y=-\frac{2}{3} x-\frac{7}{3}
\end{aligned}
$$

See last example to write $y-4=\frac{2}{5}(x+3)$ in slope-Int form.
Distribute or use LCD to clear fractions.

$$
\begin{aligned}
& L C D=5 \\
& 5 y-20=2(x+3) \quad \leftrightarrow m=\frac{2}{5}, Y-\operatorname{Int}\left(0, \frac{26}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { LCD }=5 \\
& 5 y-20=2(x+3) \\
& 5 y-20=2 x+6 \\
& \text { Isolate } y \\
& 5 y=2 x+26 \\
& y=\frac{2}{5} x+\frac{26}{5}
\end{aligned}
$$

find eau of a line that contains $(-3,5)$ with
a) Zero slope Horizontal line Y-only $y=5$
b) No slope

Vertical line

$$
\begin{aligned}
& x-0 n \backslash y \\
& x=-3
\end{aligned}
$$

find equ of aline that contains $(4,-2)$ with Hint: use $y-y_{1}=m\left(x-x_{1}\right)$
a) Slope 3
b) Slope $\frac{-1}{2}$

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y--2=3(x-4) \\
y+2=3 x-12 \\
y=3 x-14 \\
y-\operatorname{Int} \\
(0,-14)
\end{array}\left\{\begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-\frac{2}{}=\frac{-1}{2}(x-4) \\
y+2=\frac{-1}{2}(x-4) \\
y+2=\frac{-1}{2} x+2 \\
y=\frac{-1}{2} x
\end{array}\right.
$$

Find eau of a line that contains $(2,-3)$ ह. $(0,4)$. slope not given.

$$
(2,-3) \sum^{1}(0,4) \quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-3-4}{2-0}=\frac{-7}{2}
$$

Now use point-slope formula

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{-7}{2}(x-0) \\
& y-4=\frac{-7}{2} x
\end{aligned} \quad\left\{\begin{array}{l}
y=\frac{-7}{2} x+4 \\
\hline
\end{array}\right.
$$

See last example to find egn of a line that Contains $(-2,5)$ and $(3,1)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{-2-3}=\frac{4}{-5}=-\frac{-4}{5} \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =\frac{-4}{5}(x-3) \\
5 y-5 & =-4(x-3) \\
5 y-5 & =-4 x+12
\end{aligned} \rightarrow 5 y=-4 x+17
$$

find eqn of a line that contains the Origin and is parallel to the line $2 x-3 y=6$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=\frac{2}{3}(x-0) \\
& y=\frac{2}{3} x
\end{aligned}
$$

Parallel lines
\Rightarrow Same Slope

$$
\begin{gathered}
-3 y=-2 x+6 \\
y=\frac{-2}{-3} x+\frac{6}{-3} \\
y=\frac{2}{3} x-2
\end{gathered}
$$

See last example to find eau of a line that Contains $(-4,3)$ and is parallel to $2 x+5 y=8$.

$$
\begin{array}{lr}
y-y_{1}=m\left(x-x_{1}\right) & 5 y=-2 x+8 \\
y-3=\frac{-2}{5}\left(x-\frac{-4}{}\right) \\
y-\frac{2}{5} x+\frac{8}{5} \\
y-3=-\frac{2}{5}(x+4) \\
5 y-15=-2(x+4) \\
5 y-15=-2 x-8
\end{array} \quad \begin{aligned}
& y=-2 x+7 \\
& y=\frac{-2}{5} x+\frac{7}{5}
\end{aligned}
$$

find eau of a line that contains $(0,-4)$ and is perpendicular to the line $y=\frac{2}{3} x-1$.

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \quad \text { opposite Reciprocal } \\
& y-4=\frac{-3}{2}(x-0) \tag{3}\\
& y+4=\frac{-3}{2} x \Rightarrow y=\frac{-3}{2} x-4
\end{align*}
$$

See last example to find eqn of a line that contains $(3,-2)$ and is perpendicular to the line $3 x-2 y=8 . \Rightarrow-2 y=-3 x+8$

$$
\begin{aligned}
y-y_{1}=m_{k}\left(x-x_{1}\right) & y=\frac{3}{2} x-4 \\
y-2=\frac{-2}{3}(x-3) & \begin{array}{l}
\text { opposite } \\
\text { Reciprocal } \\
-2 / 3
\end{array} \\
y+2=\frac{-2}{3} x+2 & -\frac{2}{3} \cdot(-3) \\
y & =\frac{-2}{3} x
\end{aligned}
$$

SG 8, SG 9, SG 10
MPG
Due Tuesday

Graphing in equality in two variables

$$
3 x+2 y>6
$$

(1) Write in slope-Int form

$$
\begin{aligned}
& 2 y>-3 x+6 \\
& y>\frac{-3}{2} x+3
\end{aligned}
$$

Draw a broken
 line
Shade below when < shade above when)

Graph غं, shade:

$$
4 x-3 y \geq 6
$$

Rewrite in slope-Int form

$$
\begin{array}{r}
-3 y \geq-4 x+6 \\
y \leq \frac{4}{3} x-2
\end{array}
$$

Solid line
Shade below

Graph غ: shade

$$
\left\{\begin{array}{l}
x \geq-2 \\
y<4
\end{array}\right.
$$

Graph घ! Shade

$$
\left\{\begin{array}{l}
y \leq 3 \\
x>-2 \\
y \geq \frac{3}{4} x-3
\end{array}\right.
$$

